Plasma Surface Metallurgy /Alloying is a kind of surface metallurgy/alloying to employ low temperature plasma produced by glow discharge to diffuse alloying elements into the surface of substrate material to form an alloy layer. It is different with ion nitriding technology, which is only applicable to the surface infiltration of non-metallic elements. “Double Glow Plasma Surface Metallurgy Technology”, also known as the “Xu-Tec Process” can utilize any chemical elements in the periodic table including solid metallic, gas non-metallic elements and their combination to realize plasma surface alloying, hence greatly expanded the field of surface alloying. Countless surface alloys with high hardness, wear resistance and corrosion resistance, such as high speed steels, nickel base alloys and burn resistant alloys have been produced on the surfaces of a variety of materials. This technology may greatly improve the surface properties of metal materials, comprehensively improve the quality of mechanical products, save a lot of precious alloy elements for human beings. Based on the plasma nitriding technology, the Xu-Tec Process has opened up a new material engineering field of “Plasma Surface Metallurgy”. This review article briefly presents the history of glow discharge and surface alloying, double glow discharge phenomenon, basic principle and current status of Double Glow Plasma Surface Metallurgy/Alloying. Industrial applications, advantages and future potential of the Xu-Tec process are also presented.
Published in | American Journal of Physics and Applications (Volume 9, Issue 4) |
DOI | 10.11648/j.ajpa.20210904.12 |
Page(s) | 70-87 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Plasma Surface Metallurgy, Double Glow Plasma Surface Metallurgy, Xu-Tec Process, Double Glow Discharge, Surface Alloying, Surface of Material
[1] | A. W. Machlet; Vol. 1092925 (United States, 1914). |
[2] | F. Adolf; Vol. 1487554 (United States, 1924). |
[3] | B. B.; Vol. DRP 668 639 (Germany, 1932). |
[4] | B. B.; Vol. DRP 851540 (Germany, 1939). |
[5] | B. Berghaus; Vol. 510933 (British, 1937). |
[6] | T. Burakowski and T. Wierzchon, Surface Engineering of Metal (CRC Press, New York, 1998). |
[7] | K. N. Strafford, Surface Engineering: Process and Applications. (Technical Publishing Company, Lancaster, Great Britain, 1995). |
[8] | Z. Xu; Vol. 4520268 (USA, 1985). |
[9] | Z. Xu and F. F. Xiong, Plasma Surface Metallurgy: With Double Glow Discharge Technology—Xu-Tec Process (Springer Singapore, Singapore, 2017). |
[10] | Z. Xu, in 10th International Symposium on Dischargy and electrical insulation in vacuum (South Carolina, USA, 1982), p. 25. |
[11] | Z. Xu, Z. M. Wang, F. Y. Zuo, B. H. Fan, L. J. Xiao, and J. X. Zhao, Transactions of Materials & Heat Treatment (1982). |
[12] | Z. Xu, F. Y. Gu, J. D. Pang, and B. H. Fang, Surface Engineering 2, 103 (1986). |
[13] | Z. Xu, R. Liu, and Z. F. Xu, Advanced Materials & Processes 152, 33 (1997). |
[14] | Z. Y. He, F. Y. Gu, Z. Xu, and Y. Gao, Transactions of Metal Heat Treatment 3, 64 (1990). |
[15] | Z. Xu, Engineering Science 4, 36 (2002). |
[16] | H. Zhang and D. Y. Li, Wear 255, 924 (2003). |
[17] | W. Cong, Z. Yao, and X. Zhu, Wear 268, 790 (2010). |
[18] | Z.-K. Qiu, P.-Z. Zhang, D.-B. Wei, X.-F. Wei, and X.-H. Chen, Surface and Coatings Technology 278, 92 (2015). |
[19] | J. Jiang, J. Hu, X. Yang, N. Guo, H. Xu, H. Li, Y. Jin, and H. Yu, Results in Physics 15, 102674 (2019). |
[20] | N. Lin, L. Zhang, J. Zou, Q. Liu, S. Yuan, L. Zhao, Y. Yu, Z. Liu, Q. Zeng, X. Liu, Z. Wang, B. Tang, and Y. Wu, Applied Surface Science 493, 747 (2019). |
[21] | J. Xu, Y. Liu, J. Wang, X. Kui, Y. Gao, and Z. Xu, Surface and Coatings Technology 201, 5093 (2007). |
[22] | J.-y. Xu, Y. Gao, J.-w. Xiang, D.-q. Wei, and Z. Xu, Journal of Iron and Steel Research, International 14, 156 (2007). |
[23] | S. YU, K. YOU, X. LIU, Y. ZHANG, Z. WANG, and X. LIU, Surface Review and Letters 23, 1650017 (2016). |
[24] | L. Qin, K. Yang, C. Liu, and B. Tang, Materials Letters 82, 127 (2012). |
[25] | Z. ZHANG and Z. YAO, Surface Review and Letters 25, 1950034 (2018). |
[26] | X.-x. Luo, Z.-j. Yao, P.-z. Zhang, Y. Chen, H.-q. Yang, X.-f. Wu, Z.-l. Zhang, Y.-h. Lin, and S.-j. Xu, Transactions of Nonferrous Metals Society of China 25, 3694 (2015). |
[27] | X. Zhang, A. Fan, R. Zhu, Y. Ma, and B. Tang, IEEE Transactions on Plasma Science 39, 1598 (2011). |
[28] | J. XU, J. H. AI, X. S. Xie, and Z. XU, Surface & Coatings Technology 168, 142 (2003). |
[29] | X. Jiang, X. Xie, Z. Xu, and W. Liu, Materials Chemistry and Physics 92, 340 (2005). |
[30] | J. Xu and C. Zhuo, Materials and Corrosion 61, 7 (2010). |
[31] | J. Xu, C. Zhuo, D. Han, J. Tao, L. Liu, and S. Jiang, Corrosion Science 51, 1055 (2009). |
[32] | X. Zhang, X. Xie, Z. Yang, J. Dong, Z. Xu, Y. Gao, and T. Zhang, Surface and Coatings Technology 131, 378 (2000). |
[33] | X. Jiang, X. Xie, and Z. Xu, Surface and Coatings Technology 168, 156 (2003). |
[34] | J. Xu, C. Zhou, and S. Jiang, Intermetallics 18, 1669 (2010). |
[35] | J. Xu, W. Liu, S. Jiang, P. Munroe, and Z.-H. Xie, Ultrasonics Sonochemistry 50, 138 (2019). |
[36] | X.-l. Zhu, Z.-j. Yao, X.-d. Gu, W. Cong, and P.-z. Zhang, Transactions of Nonferrous Metals Society of China 19, 143 (2009). |
[37] | X. X. Luo, Z. Yao, and P. Z. Zhang, Rare Metal Materials and Engineering 47, 3127 (2018). |
[38] | H. Liu, J. Tao, J. Xu, Z. Chen, and X. Luo, Applied Surface Science 256, 5939 (2010). |
[39] | Y. Lin, C. Wang, and J. Tao, Surface and Coatings Technology 235, 544 (2013). |
[40] | X.-X. Luo, Z.-J. Yao, P.-Z. Zhang, Q. Miao, W.-P. Liang, D.-B. Wei, and Y. Chen, Applied Surface Science 305, 259 (2014). |
[41] | T. X. Meng, Q. Guo, W. Xi, W. Q. Ding, X. Z. Liu, N. M. Lin, S. W. Yu, and X. P. Liu, Applied Surface Science 433, 855 (2018). |
[42] | L. L. Guo, L. Qin, F. Y. Kong, H. Yi, and B. Tang, Applied Surface Science 388, 203 (2016). |
[43] | J. G. Tang, D. X. Liu, C. B. Tang, X. H. Zhang, H. Xiong, and B. Tang, Transactions of Nonferrous Metals Society of China 22, 1967 (2012). |
[44] | L. Qin, C. S. Liu, K. K. Yang, and B. Tang, Surface and Coatings Technology 225, 92 (2013). |
[45] | C.-M. Lin, W.-Y. Kai, C.-Y. Su, C.-N. Tsai, and Y.-C. Chen, Journal of Alloys and Compounds 717, 197 (2017). |
[46] | L. Qin, L. Tian, A. Fan, B. Tang, and Z. Xu, Surface and Coatings Technology 201, 5282 (2007). |
[47] | B. Ren, Q. Miao, W. Liang, Z. Yao, and P. Zhang, Surface and Coatings Technology 228, S206 (2013). |
[48] | J. Xu, L. Liu, and X. Lu, Journal of Alloys and Compounds 509, 2450 (2011). |
[49] | J. Xu, G. d. Wang, X. Lu, L. Liu, P. Munroe, and Z.-H. Xie, Ceramics International 40, 8621 (2014). |
[50] | Y. Xiushui, L. Wenping, M. Qiang, X. Yi, R. Beilei, and G. Kai, Rare Metal Materials and Engineering 44, 557 (2015). |
[51] | L. Liu, J. Xu, Z.-H. Xie, and P. Munroe, Journal of Materials Chemistry A 1, 2064 (2013). |
[52] | Z. K. Qiu, P. Z. Zhang, D. B. Wei, X. F. Wei, X. H. Chen, and Y. Wang, Surface and Coatings Technology 280, 301 (2015). |
[53] | D. B. Wei, P. Z. Zhang, Z. J. Yao, W. P. Liang, Q. Miao, and Z. Xu, Corrosion Science 66, 43 (2013). |
[54] | D. B. Wei, P. Z. Zhang, Z. J. Yao, J. T. Zhou, X. F. Wei, and X. H. Chen, Vacuum 121, 81 (2015). |
[55] | D. B. Wei, P. Z. Zhang, Z. J. Yao, X. F. Wei, J. T. Zhou, and X. H. Chen, Applied Surface Science 388, 571 (2016). |
[56] | D. B. Wei, P. Z. Zhang, Z. J. Yao, X. F. Wei, J. T. Zhou, and X. H. Chen, Surface Engineering 34, 1743294415Y.000 (2016). |
[57] | D. Wei, P. Zhang, Z. Yao, X. Chen, and F. Li, Vacuum 155, 233 (2018). |
[58] | J. Xu, Z. Y. Li, S. Xu, P. Munroe, and Z. H. Xie, Journal of Power Sources 297, 359 (2015). |
[59] | J. Xu, H. J. Huang, Z. Y. Li, S. Xu, H. L. Tao, P. Munroe, and Z. H. Xie, Journal of Alloys and Compounds 663, 718 (2016). |
[60] | J. J. Ma, J. Xu, S. Y. Jiang, P. Munroe, and Z. H. Xie, Ceramics International 42, 16833 (2016). |
[61] | S. Peng, J. Xu, Z. Y. Li, S. Y. Jiang, P. Munroe, Z. H. Xie, and H. Lu, Ceramics International (2019). |
[62] | F. Cheng and J. Sun, International Journal of Hydrogen Energy 44, 18415 (2019). |
[63] | W. B. Wang, X. Zhong, Z. Y. He, Z. X. Wang, and P. Z. Zhang, Chinese Journal of Aeronautics 20, 111 (2007). |
[64] | Q. Wang, P. Z. Zhang, D. B. Wei, R. N. Wang, X. H. Chen, and H. Y. Wang, Materials & Design 49, 1042 (2013). |
[65] | Q. Wang, P. Z. Zhang, D. B. Wei, X. H. Chen, R. N. Wang, H. Y. Wang, and K. T. Feng, Materials & Design (1980-2015) 52, 265 (2013). |
[66] | D. B. Wei, X. H. Chen, P. Z. Zhang, F. Ding, F. K. Li, and Z. J. Yao, Applied Surface Science 441, 448 (2018). |
[67] | W. Wang, Z. Xu, Z. He, Z. Wang, and P. Zhang, Vacuum 81, 937 (2007). |
[68] | L. Liu, H. H. Shen, X. Z. Liu, Q. Guo, T. X. Meng, Z. X. Wang, H. J. Yang, and X. P. Liu, Applied Surface Science 388, 103 (2016). |
[69] | L. Liu, H. H. Shen, X. Z. Liu, Q. Guo, T. X. Meng, Z. X. Wang, and X. P. Liu, Chinese Journal of Nonferrous Metals (2016). |
[70] | F. Zhang, Z. Wang, Q. Chen, and H. Cai, Plasma Science and Technology 14, 71 (2012). |
[71] | Y. Qing-long, C. Cheng-zhong, S. Yong-an, X. Zhong, and T. Bin, Transactions of Nonferrous Metals Society of China 14, 516 (2004). |
[72] | H. Y. Wu, P. Z. Zhang, H. F. Zhao, L. Wang, and A. G. Xie, Applied Surface Science 257, 1835 (2011). |
[73] | W.-p. Liang, Z. Xu, Q. Miao, X.-p. Liu, and Z.-y. He, Surface and Coatings Technology 201, 5068 (2007). |
[74] | H. Wu, P. Zhang, L. Wang, H. Zhao, and Z. Xu, Applied Surface Science 256, 1333 (2009). |
[75] | H.-y. Wu, P.-z. Zhang, W. Chen, L. Wang, H.-f. Zhao, and Z. Xu, Transactions of Nonferrous Metals Society of China 19, 1121 (2009). |
[76] | W.-p. Liang, Z. Xu, Q. Miao, X.-p. Liu, and Z.-y. He, Chinese Journal of Aeronautics 19, 255 (2006). |
[77] | X. H. Chen, P. Z. Zhang, D. B. Wei, F. Ding, F. K. Li, X. F. Wei, and S. J. Ma, Materials Letters 215, 292 (2018). |
[78] | Z. Li-bo, W. Dong-bo, Z. Ping-ze, C. Xiao-hu, and D. Feng, Surface Technology 47, 17 (2018). |
[79] | Y. Xu, P. Shi, J. Qiu, A. Wu, S. Cui, Z. Li, and X. Tao, Vacuum 165, 148 (2019). |
[80] | Z. Qiu, P. Zhang, D. Wei, B. Duan, and P. Zhou, Tribology International 92, 512 (2015). |
[81] | L. B. Wang, Z. F. Chen, Y. Zhang, and W. P. Wu, International Journal of Refractory Metals and Hard Materials 27, 590 (2009). |
[82] | X. N. Cong, Z. F. Chen, W. P. Wu, J. Xu, and F. E. Boafo, Applied Surface Science 258, 5135 (2012). |
[83] | W. P. Wu, Z. F. Chen, X. W. Cheng, and Y. W. Wang, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307, 315 (2013). |
[84] | Z. F. Chen, W. P. Wu, and X. N. Cong, Journal of Materials Science & Technology 30, 268 (2014). |
[85] | W. Wu, J. Liu, Y. Zhang, and X. Wang, Surface Engineering 35, 954 (2019). |
[86] | W. Wu, Z. Chen, X. Lin, B. Li, and X. Cong, Vacuum 86, 429 (2011). |
[87] | W. P. Wu, Z. F. Chen, and X. Lin, Advanced Materials Research 189-193, 688 (2011). |
[88] | Z. F. Chen, Y. Zhang, L. B. Wang, J. Huang, R. J. Xue, and W. Shang, Journal of Nuclear Materials 389, 484 (2009). |
[89] | Y. Zhang, Z. F. Chen, L. B. Wang, B. Yan, C. Li, and D. Fang, Fusion Engineering and Design 84, 15 (2009). |
[90] | Z. F. Chen, W. P. Wu, H. Cheng, Y. Liu, S. M. Wang, and R. J. Xue, Acta Astronautica 66, 682 (2010). |
[91] | W. P. Wu, Z. F. Chen, H. Cheng, L. B. Wang, and Y. Zhang, Applied Surface Science 257, 7295 (2011). |
[92] | X. Cong, Z. Chen, W. Wu, Z. Chen, and F. Edmond Boafo, Acta Astronautica 79, 88 (2012). |
[93] | W. P. Wu, J. J. Jiang, and Z. F. Chen, Acta Astronautica 123, 1 (2016). |
[94] | W. Yanfeng, L. Zhengxian, L. Wei, D. Jihong, J. Shouchang, and Z. Changwei, Rare Metal Materials and Engineering 47, 3295 (2018). |
[95] | J. Xu, L. Liu, L. Jiang, P. Munroe, and Z.-H. Xie, Ceramics International 39, 9471 (2013). |
[96] | Y. Zheng, J. Zhong, X. Lv, Y. Zhao, W. Zhou, and Y. Zhang, International Journal of Refractory Metals and Hard Materials 44, 109 (2014). |
[97] | Z. Jie, Z. Yong, Y. Quan, Z. Yixin, and Y. Lixin, International Journal of Refractory Metals and Hard Materials 27, 642 (2009). |
[98] | J. Gao, H. Hei, Y. Shen, X. Liu, B. Tang, Z. He, and S. Yu, Applied Surface Science 356, 429 (2015). |
[99] | L. Li, H. Hei, Y. Wang, K. Zheng, Y. Ma, J. Gao, B. Zhou, Z. He, J. Zong, S. Yu, and B. Tang, Journal of Alloys and Compounds 805, 1135 (2019). |
[100] | W. Rong, H. Hei, Q. Zhong, Y. Shen, X. Liu, X. Wang, B. Zhou, Z. He, and S. Yu, Applied Surface Science 359, 41 (2015). |
[101] | C. L. Wang, Y. Gao, B. U. Gen-Tao, and G. Shen, Transactions of Materials & Heat Treatment (2010). |
[102] | Y. P. Liu, J. X. Xue, and P. D. Han, Materials Science Forum 654-656, 1968 (2010). |
[103] | H. Y. Wu, Y. Li, Y. Wang, P. Z. Zhang, and W. F. Rao, Journal of Rare Earths 34, 958 (2016). |
[104] | K. Huang, H. Y. Wu, F. Jiang, G. Z. Shen, and L. Wang, Polymer Degradation and Stability 156, 228 (2018). |
[105] | L. H. Xu, G. G. Zheng, H. Y. Wu, J. F. Wang, F. Gu, J. Su, F. L. Xian, and Z. H. Liu, Optical Materials 35, 1582 (2013). |
[106] | Y. Zhou, C. Liu, M. Y. Li, H. Y. Wu, X. Zhong, D. Li, and D. F. Xu, Materials Letters 106, 94 (2013). |
[107] | K. Huang, H. Wu, X. Zhao, J. Li, and S. Dong, Materials Letters 211, 230 (2018). |
[108] | X. Y. Zhang, X. B. Huang, M. Yong, N. M. Lin, A. L. Fan, and B. Tang, Applied Surface Science 258, 10058 (2012). |
[109] | Z. Xu, Z. M. Yang, J. X. Dong, X. S. Xie, Z. Xu, and Y. Gao, Special Steel (1999). |
[110] | F. Ben-hui, X. Zhong, Z. Wei-neng, and H. Ji, Heat Treatment of Metals 31, 37 (1988). |
[111] | J. Huang, Ph. D Thesis, Nanjing University of Aeronautics and Astronautics, 2012. |
[112] | Z. Xu, C. Z. Wang, Y. A. Su, and B. Tang, Heat Treatment of Metals 30, 13 (1988). |
[113] | Z. XU, Y. G. SU, C. Z. WANG, Y. GAO, T. BIN, and Z. F. XU, Journal of advanced materials 31, 3 (1999). |
APA Style
Zhong Xu, Jun Huang, Zaifeng Xu, Xiaoping Liu, Hongyan Wu. (2021). Plasma Surface Metallurgy of Materials Based on Double Glow Discharge Phenomenon. American Journal of Physics and Applications, 9(4), 70-87. https://doi.org/10.11648/j.ajpa.20210904.12
ACS Style
Zhong Xu; Jun Huang; Zaifeng Xu; Xiaoping Liu; Hongyan Wu. Plasma Surface Metallurgy of Materials Based on Double Glow Discharge Phenomenon. Am. J. Phys. Appl. 2021, 9(4), 70-87. doi: 10.11648/j.ajpa.20210904.12
AMA Style
Zhong Xu, Jun Huang, Zaifeng Xu, Xiaoping Liu, Hongyan Wu. Plasma Surface Metallurgy of Materials Based on Double Glow Discharge Phenomenon. Am J Phys Appl. 2021;9(4):70-87. doi: 10.11648/j.ajpa.20210904.12
@article{10.11648/j.ajpa.20210904.12, author = {Zhong Xu and Jun Huang and Zaifeng Xu and Xiaoping Liu and Hongyan Wu}, title = {Plasma Surface Metallurgy of Materials Based on Double Glow Discharge Phenomenon}, journal = {American Journal of Physics and Applications}, volume = {9}, number = {4}, pages = {70-87}, doi = {10.11648/j.ajpa.20210904.12}, url = {https://doi.org/10.11648/j.ajpa.20210904.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20210904.12}, abstract = {Plasma Surface Metallurgy /Alloying is a kind of surface metallurgy/alloying to employ low temperature plasma produced by glow discharge to diffuse alloying elements into the surface of substrate material to form an alloy layer. It is different with ion nitriding technology, which is only applicable to the surface infiltration of non-metallic elements. “Double Glow Plasma Surface Metallurgy Technology”, also known as the “Xu-Tec Process” can utilize any chemical elements in the periodic table including solid metallic, gas non-metallic elements and their combination to realize plasma surface alloying, hence greatly expanded the field of surface alloying. Countless surface alloys with high hardness, wear resistance and corrosion resistance, such as high speed steels, nickel base alloys and burn resistant alloys have been produced on the surfaces of a variety of materials. This technology may greatly improve the surface properties of metal materials, comprehensively improve the quality of mechanical products, save a lot of precious alloy elements for human beings. Based on the plasma nitriding technology, the Xu-Tec Process has opened up a new material engineering field of “Plasma Surface Metallurgy”. This review article briefly presents the history of glow discharge and surface alloying, double glow discharge phenomenon, basic principle and current status of Double Glow Plasma Surface Metallurgy/Alloying. Industrial applications, advantages and future potential of the Xu-Tec process are also presented.}, year = {2021} }
TY - JOUR T1 - Plasma Surface Metallurgy of Materials Based on Double Glow Discharge Phenomenon AU - Zhong Xu AU - Jun Huang AU - Zaifeng Xu AU - Xiaoping Liu AU - Hongyan Wu Y1 - 2021/08/04 PY - 2021 N1 - https://doi.org/10.11648/j.ajpa.20210904.12 DO - 10.11648/j.ajpa.20210904.12 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 70 EP - 87 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20210904.12 AB - Plasma Surface Metallurgy /Alloying is a kind of surface metallurgy/alloying to employ low temperature plasma produced by glow discharge to diffuse alloying elements into the surface of substrate material to form an alloy layer. It is different with ion nitriding technology, which is only applicable to the surface infiltration of non-metallic elements. “Double Glow Plasma Surface Metallurgy Technology”, also known as the “Xu-Tec Process” can utilize any chemical elements in the periodic table including solid metallic, gas non-metallic elements and their combination to realize plasma surface alloying, hence greatly expanded the field of surface alloying. Countless surface alloys with high hardness, wear resistance and corrosion resistance, such as high speed steels, nickel base alloys and burn resistant alloys have been produced on the surfaces of a variety of materials. This technology may greatly improve the surface properties of metal materials, comprehensively improve the quality of mechanical products, save a lot of precious alloy elements for human beings. Based on the plasma nitriding technology, the Xu-Tec Process has opened up a new material engineering field of “Plasma Surface Metallurgy”. This review article briefly presents the history of glow discharge and surface alloying, double glow discharge phenomenon, basic principle and current status of Double Glow Plasma Surface Metallurgy/Alloying. Industrial applications, advantages and future potential of the Xu-Tec process are also presented. VL - 9 IS - 4 ER -