The present study, aimed at analyzing by comparison the nutritional, mineral and fatty acid composition of some available green leafy vegetables, will promote an increased use and consumption of these vegetables for their contribution as a source of nutrients. L. schlechteri was used as a reference vegetable to perform this comparison. Recommended AOAC methods were used for the determination of moisture, ash, lipids, carbohydrates, and proteins of L. schlechteri, while the gas chromatographic method was used to evaluate the fatty acid profile of the extracted oil. The results showed that the ash of its vegetables ranged from 1.71 to 30.62% (b.h). Moisture was higher in L. schlechteri (97.50% b.h) and lower in C. integrifolia. (61.22% b.h). Protein and carbohydrate contents varied widely from 3.5 to 30.62 g/100 g, and from 2.30 to 63.22 g/100 g respectively. Lipids were higher in L. schlechteri (7.85%) and lower in Hibiscus c. (0.20%), while the calorific value in all leafy vegetables was relatively low. L. schlechteri had the highest calcium (1160 mg/100 g) and iron (400 mg/100 g) contents, M. oleifera in Mg (1910 mg) and finally G. africanum in phosphorus (1340 mg/100 g). It should also be noted that the PMQ oils contain 5 main fatty acids: palmitic, C16:0 (15.7-63%); stearic, C18:0 (1-2.50%); oleic, C18:1 (2-5.1%); linoleic, C18:2 (4-28.68%) and linolenic (9-53%). The values of ω6/ω3 and PUFA/SFA ratios are within the recommended levels for edible oils.
Published in | Science Journal of Chemistry (Volume 11, Issue 1) |
DOI | 10.11648/j.sjc.20231101.14 |
Page(s) | 26-35 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Evaluation, Leafy Vegetables, L. chlechteri, Mineral Value, Nutritional Value
[1] | Lenzi, Anna; Orlandini, Alessandro; Bulgari, Roberta; Ferrante, Antonio; Bruschi, Piero (2019). Antioxidant and Mineral Composition of Three Wild Leafy Species: A Comparison Between Microgreens and Baby Greens. Foods, 8 (10), 8, 487. doi: 10.3390/foods8100487. |
[2] | Slavin, J. L. (2013). Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes. Advances in Nutrition: An International Review Journal, 4 (3), 351S–355S. doi: 10.3945/an.112.003491. |
[3] | Natesh HN, Abbey L, Asiedu SK (2017) An Overview of Nutritional and Antinutritional Factors in Green Leafy Vegetables. Horticult Int J 1 (2): 00011. DOI: 10.15406/hij.2017.01.00011. |
[4] | Sobowale, S. S; Olatidoye, O. P; Olorode, O. O, and Akinlotan, J.. Nutritional Potentials and Chemical Value of Some Tropical Leafy Vegetables Consumed in South West Nigeria. Journal of Sciences and Multidisciplinary Research, Volume 3, March 2011. |
[5] | Kinsella, J. E. 1970. Evaluation of plant leaf protein as a source of food protein. Chemistry and Industry, p. 550. |
[6] | Saha, J., Biswal, A. K. and Deka, S. C., (2015). Chemical composition of some underutilized green leafy vegetables of Sonitpur district of Assam, India. International Food Research Journal 22 (4): 1466-1473. |
[7] | S. M. Moyo, J. C. Serem, M. J. Bester, V. Mavumengwana & E. Kayitesi (2020): African Green Leafy Vegetables Health Benefits Beyond Nutrition, Food Reviews. |
[8] | WHO. Report on the Status of Major Health Risk Factors for Noncommunicable Diseases: WHO African Region, 2015, 2016. https://www.afro.who.int/sites/default/files/2017-06/ 15264_who_afr-situation-ncds-15-12-2016-for-web_0.pdf. |
[9] | Rhona L. Miller-Cebert; Nahid A. Sistani; Ernst Cebert (2009). Comparative mineral composition among canola cultivars and other cruciferous leafy greens, 22 (2), 112–116. doi: 10.1016/j.jfca.2008.11.002. |
[10] | Oduro, S. A. D.; Buchner, D. M.; Andrade, J. E.; Toussaint, D. S. G. A Comparative Study of Fruit and Vegetable Consumption and Physical Activity among Adolescents in 49 Low-and-Middle-Income Countries. Sci. Rep. 2018, 8, 1–12. |
[11] | WHO; FAO. Fruit and Vegetable Health Initiative. Report, 2017. http://www.fao.org/3/a-i6807e.pdf. |
[12] | US Department of Health and Human Services and US Department of Agriculture, Dietary Guidelines for Americans 2015-2010, 8th ed. (Dec. 2015) [hereinafter Dietary Guidelines] http://health.gov/dietaryguidelines/2015/guidelines/; United States Dept. of Agriculture, HHS and USDA Release New Dietary Guidelines to Encourage Healthy Eating Patterns to Prevent Chronic Diseases (Jan, 7, 2016) http://www.usda.gov/wps/portal/usda/usdahome?contentid=2016/01/0005.xml&contentidonly=true. |
[13] | Gupta, K., G. K. Barat, D. S. Wagle and H. K. L. Chawala, 1989. Nutrient contents and antinutritional factors in conventional and non conventional leafy vegetables. Food Chem., 31: 105-116. |
[14] | Okafor, JC (1983). Horticultural Promising indigenous wild plant species of the Nigerian Forest zone. Acta Hort. 123: 165-176. |
[15] | Nangula P. Uusiku; André Oelofse; Kwaku G. Duodu; Megan J. Bester; Mieke Faber (2010). Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review, 23 (6), 499–509. doi: 10.1016/j.jfca.2010.05.002. |
[16] | Weinberger, K., Msuya, J., 2004. Indigenous Vegetables in Tanzania – Significance and Prospects. AVRDC – The World Vegetable Center, Technical Bulletin No. 31, Taiwan. |
[17] | Odhav, B., Beekrum, S., Akula, Us, Baijnath, H., 2007. Preliminary assessment of nutritional value of traditional leafy vegetables in Kwa Zulu-Natal, South Africa. Journal of Food Composition and Analysis 20, 430–435. |
[18] | AOAC, (1990). Association of Official Analytical Chemists, Official Methods of Analysis, 15th ed. Arlington, VA. ed. USA. |
[19] | AOAC, 1997. Official methods and recommended pratics of the American Oil chemists Society (5th ed.). Champaign, USA: AOCS Press. |
[20] | FAO, 1988. “Traditional food plants.” Food and nutrition. FAO, ROME. 42p. |
[21] | Roniche Nguie, Nadia P. G. Pambou-Tobi, Michel Gadet Dzondo, Arnaud W. G Tamba Sompila, Reyes Herdenn Gampoula, Michel Elenga and Jacques Emmanuel Moussounga. 2022. Nutritional Contribution of Ledermanniella schlechteri Extracted from the Cataracts of the Djoue River in Congo. Int. J. Curr. Microbiol. App. Sci. 11 (11): 1-12. doi: https://doi.org/10.20546/ijcmas.2022.1111.001 |
[22] | Nabila Belhaj; Elmira Arab-Tehrany; Michel Linder (2010). Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin, 45 (2), 187–195. doi: 10.1016/j.procbio.2009.09.005. |
[23] | Itoua Okouango. Y. S, Mananga Vital, Elenga Michel, et Adialo Leila Samira., (2015). Caractérisation alimentaire et nutritive du légume traditionnel lagenaria siceraria à Brazzaville (Congo). |
[24] | Kossiwa Wolali Go-Maro, Idès Bilabina, Elolo Osséyi, Courdjo Lamboni. 2014. Composition chimique et transformation des feuilles de taro (Xanthosoma Sagittifolium) en conserve de ragout. Journal de la Société Ouest-Africaine de Chimie, 2014, vol. 38, p. 50. |
[25] | ItouaOkouango. Y. S, Mananga Vital, Elenga Michel, et Adialo Leila Samira., 2019. Caractérisation alimentaire et nutritive du légume traditionnel Lagenaria sicerariaà Brazzaville (Congo). International Journal of Biological and Chemical Sciences, 2019. |
[26] | Mbemba F, Moutsambote JM, Nzikou JM, Mvoula-Tsiery M, Itoua Okouango S, Nganga I, Mboungou Z, Silou T. 2013. Physical Factures Nutritional Value of the Traditional Picking Vegetable, Cuervea isangiensis (De wild.) N. hallé in Congo- Brazzaville. Advance Journal of Food Science and Technology, 5 (1): 72-76. |
[27] | Moussa Ndong, Salimata Wade, Nicole Dossou, Amadou T. Guiro, Rokhaya Diagne Gning. 2007. Valeur nutritionnelle du Moringa oléifera, étude de la biodisponibilité du fer, effet d’enrichissement de divers plats traditionnels Sénégalais avec la poudre des feuilles: African journal of Food Agriculture Nutrition and Development, vol. 7, no. 3. |
[28] | Dorosz Ph. Vitamines, sels minéraux, oligoéléments Ed Maloine; paris. 1999, 101P. |
[29] | Depesay L. Les légumes dans l’alimentation: leurs effets nutritionnels. Fondation Louis Bonduelle-septembre 2007. |
[30] | Debruyne. (2001). Transformation et aspect industriels: technique de l’ingénieur, traité agroalimentaire. F6030: 1-12. |
[31] | Institute of Medicine. Food and Nutrition Board, dietary reference intakes: energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academies Press; 2002. |
[32] | Fleck, H. 1981. Introduction to Nutrition. 4th ed. Macmillan Publishing Co. |
[33] | Hassan, L. G. and K. J. Umar. 2006. Nutritional value of balsam apple (Momordica balsamina L.) leaves. Pakistan J. Nutr. 5 (6): 522-529. |
[34] | Noorasmah Saupi, MutaHarah Zakaria, JaparSidik Bujang and Aziz Arshad. 2015. The proximate compositions and mineral contents of Neptuniao leracea Loureiro, an aquatic plant from Malaysia. Emir. J. Food Agric. 27 (3): 266-274 doi: 10.9755/ejfa.v27i3.16876. |
[35] | Baudoin WO, Louise Fresco O (2002) Food and nutrition security towards human security. ICV Souvenir Paper, Italy, p. 1-19. |
[36] | Ayodeji O. Fasuyi. 2005. Nutritional Evaluation of Cassava (Manihot esculenta, Crantz) Leaf Protein Concentrates (CLPC) as Alternative Protein Sources in Rat Assay. Pakistan Journal of Nutrition 4 (1): 50-56p. |
[37] | F. Busson, B. Bergeret. 1958. Contribution à l'étude chimique des feuilles de manioc (Manihot utilissima Pohl. euphorbiacées). Médecine Tropicale, 1958, 18 (1), p. 142-144. |
[38] | Jacotot. B, Campillo B., (2003). Nutrition humaine, Abrégés, Connaissances et pratiques. Paris: Editions Masson, Pages 310. |
[39] | Falquet. J. J.-P. 2006. Hurni Aspects Nutritionnels Antenna Technologies. November p 13. |
[40] | Tchiegang C, Kitikil A. 2004. Données ethno nutritionnelles et caractéristiques physico-chimiques des légumes feuilles consommés dans la savane de l’Adamaoua (Cameroun). Tropicultura, 22 (1): 11-18. |
[41] | Hazra, P. and M. G. Som. 2005. Vegetable Science. Kalyani Publisher. |
[42] | Sushanta Borah; Ananta M. Baruah; Arup K. Das; Junmoni Borah (2009). Determination of Mineral Content in Commonly Consumed Leafy Vegetables, 2 (3), 226–230. doi: 10.1007/s12161-008-9062-z. |
[43] | Broin M., 2012. Composition nutritionnelle de Moringa oleifera, Moringaneus, http://www.Moringanews. Org, 1-5P. |
[44] | Létourneau-Montminy M. P., Jondreville C., Sauvant D., Narcy A., 2012. Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal, 6, 1590-1600. |
[45] | Asaolu, S. S.; Adefemi, O. S.; Oyakilome, I. G.; Ajibulu, K. E.; Asaolu, M. F. (2012). Proximate and Mineral Composition of Nigerian Leafy Vegetables. Journal of Food Research, 1 (3), 214–. doi: 10.5539/jfr.v1n3p214. |
[46] | María D. Raigón; Jaime Prohens; Julio E. Muñoz-Falcón; Fernando Nuez (2008). Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein, 21 (5), 370–376. doi: 10.1016/j.jfca.2008.03.006. |
[47] | Anses (2013). relatif à la demande d'évaluation des justificatifs d'emploi de d’un aliment destiné à des fins médicales spéciales pour les besoins nutritionnels des enfants de plus de 8 ans, adolescents et des adultes dans le cadre du traitement nutritionnel de maladies héréditaires du métabolisme des acides aminés (comme la phénylcétonurie ou l’hyperphénylalaninémie). Page 3. |
[48] | K. O. Soetan, C. O. Olaiya and O. E. Oyewole (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science Vol. 4 (5) pp. 200-222, May 2010. |
[49] | Schachter, S. C. (1996). Epilepsy and art. Medical Journal of Australia, 164 (4), 245–248. doi: 10.5694/j.1326-5377.1996.tb94159.x. |
[50] | Mbemba F, Tatola NK, Itoua-Okouango S, Massamba D, Nzikou JM, Silou Th, Moutsambote JM, Mvoula-Tsieri M. 2012. Composition in Mineral Elements of the Traditional Vegetables Leaves of Cuervea isangiensis (de wild.) N. hallé in Congo-Brazzaville. Current Research Journal of Biological Sciences, 4 (6): 738-742. |
[51] | Anses (2016). Actualisation des repères du PNNS: élaboration des références nutritionnelles. Page 33. |
[52] | Galloway R (2003) Anemia prevention and control: What works part I: Program guidance, USA, p. 1-77. |
[53] | Mamatha Kumari; Sheetal Gupta; A. Jyothi Lakshmi; Jamuna Prakash (2004). Iron bioavailability in green leafy vegetables cooked in different utensils, 86 (2), 217–222. doi: 10.1016/j.foodchem.2003.08.017. |
[54] | WHO (1998). Life in the 21st century: a vision for all. Report of the Director General of WHO. The World Health Report (p. 133). Switzerland, Geneva. |
[55] | Gopalan, C., Shastry, B. V. R., Balasubramanium, S. C., Narasinga Rao, B. S., Deosthale, Y. G., & Panth, K. C. (1996). Nutritive value of Indian foods. Hyderabad. |
[56] | NIN (1998). Dietary guidelines for Indians. Hyderabad: Indian Council of Medical Research. |
[57] | Khader, V., Rama, S., 2003. Effect of maturity on macromineral content of selected leafy vegetables. Asia Pacific Journal of Clinical Nutrition 12, 45–49. |
[58] | Guil Guerrero, J. L., Gimenez Martinez, J. J., Torija Isasa, M. E., 1998. Mineral nutrient composition of edible wild plants. Journal of Food Composition and Analysis 11, 322–328. |
[59] | Agostoni, Carlo; Moreno, Luis; Shamir, Raanan (2015). Palmitic Acid and Health: Introduction. Critical Reviews in Food Science and Nutrition, 00–00. doi: 10.1080/10408398.2015.1017435. |
[60] | Carta, Gianfranca; Murru, Elisabetta; Banni, Sebastiano; Manca, Claudia (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology, 8, 902. doi: 10.3389/fphys.2017.00902. |
[61] | FAO/OMS., (1993). Les graisses et huiles dans la nutrition humaine: Rapport d’une commission mixte d’experts, Romme p 19-26. |
[62] | Pang-Q. S, Guo-B. J, Ruan-J. H., (1988). "Enhancement of endonuclease activity and repair DNA synthesis by polysaccharide of Spirulina platensis" I-Chuan-Hsueh-Pao. 1988; 15 (5): 374-81. |
[63] | Innis, Sheila M. (2015). Palmitic Acid in Early Human Development. Critical Reviews in Food Science and Nutrition, 56 (12): 1952-1959. doi: 10.1080/10408398.2015.1018045. |
[64] | Sheila M. Innis (2013). Maternal Nutrition, Genetics, and Human Milk Lipids, 2 (3), 151–158. doi: 10.1007/s13668-013-0048-0. |
[65] | Berry, Sarah E. E. (2009). Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutrition Research Reviews, 22 (1), 3-17. doi: 10.1017/S0954422409369267. |
[66] | E. Fokou, M. B. Achu, G. Kansci, R. Ponka, M. Fotso, C. Tchiégang and F. M. Tchouanguep (2009). Chemical Properties of Some Cucurbitaceae Oils from Cameroon. Pakistan Journal of Nutrition 8 (9): 1325-1334, 2009. |
[67] | Ng, T. K. W., 1994. A Critical Review of the Cholesterolaemic effects of Palm Oil. Food and Nutr. Bull., 15: 13. |
[68] | Sette, S., Le Donne, C., Piccinelli, R., Arcella, D., Turrini, A., Leclercq, C., et al. (2011). The third Italian National Food Consumption Survey, INRAN-SCAI 2005-06–part 1: nutrient intakes in Italy. Nutr. Metab. Cardiovasc. Dis. 21, 922–932. doi: 10.1016/j.numecd.2010.03.001. |
[69] | Grundy, S M (1994). Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. The American Journal of Clinical Nutrition, 60 (6), 986S–990S. doi: 10.1093/ajcn/60.6.986S. |
[70] | T Tholstrup, P Marckmann, J Jespersen, B Sandström. 1994. Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids. The American Journal of Clinical Nutrition, Volume 59, Issue 2, February 1994, Pages 371–377, https://doi.org/10.1093/ajcn/59.2.371 |
[71] | Hegsted DM, McGandy RB, Myers ML, Stare FJ. Quantitative ef-fects of dietary fat on serum cholesterol in man (1965). Am J Clin Nutr; 17: 281-95. |
[72] | Bonanome A, Grundy SM. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels (1988). N Engl J Med; 319: 1244-8. |
[73] | Sales-Campos, Helioswilton; Reis de Souza, Patricia; Crema Peghini, Bethanea; Santana da Silva, Joao; Ribeiro Cardoso, Cristina (2013). An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Reviews in Medicinal Chemistry, 13 (2), 201–210. doi: 10.2174/138955713804805193. |
[74] | Owen, R. W.; Mier, W.; Giacosa, A.; Hull, W. E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem Toxicol., 2000, 38, 647-659. |
[75] | Kris-Etherton PM. Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 1999; 100: 1253–8. |
[76] | Eduardo Lopez-Huertas (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies, 61 (3), 200–207. doi: 10.1016/j.phrs.2009.10.007. |
[77] | FAO, 1994. Experts’ recommendations of Fats and oils in human nutrition. Fats and oils in human nutrition: Report of a Joint Expert Consultation, FAO Food and Nutrition Paper, 57: 7. |
[78] | Simopoulos AP (2002) Omega-3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition 11 (s6): S163-S173. |
[79] | White. P. J., (2008). Fatty acids in oilseeds (vegetable oils). In Chow, K. C. ed. Fatty Acids in Foods and their Health Implications, pp. 227-262. CRC Press, New York, NY. |
[80] | Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R, Richardson, R. I., Huges, S. I., Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78, 343 –358. |
[81] | Ackman. R. G., (2008). Fatty acids in fish and shellfish. In Chow, C. K., ed., Fatty Acids in Foods and Their Health Implication£s, pp. 155-185. CRC Press, London, UK. |
[82] | Givens, D. I., Kliem, K. E., Gibbs, R. A. (2006). The role of meat as a source of n-3 polyunsaturated fatty acids in the human diet, Meat Science, 74, 209-218. |
[83] | R. Vidri h, S. Filip and J. Hri bar (2009). Content of Higher Fatty Acids in Green Vegetables. Czech J. Food Sci, Vol. 27, Special Issue. |
[84] | Scollan, N. D., Hocquette, J.-F., Nuernberg, K., Dannenberger, D., Richardson, R. I., Maloney, A. (2006). Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality, Meat Science, 74, 17-33. |
[85] | Dušica S. Ivanov, Jovanka D. Lević, Slavica A. Sredanović (2010). Fatty acid composition of various soybean products. Food and Feed Research 2, 65-70. |
[86] | Simopoulos, A. P. (2008). The importance of the omega 6/omega 3 fatty acid ratio in cardiovascular disease and other chronic diseases, Exp Biol Med (Maywood), 233 (6), 674-88. |
[87] | Bucher HC, Hengstler PSC, Meier G. Polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. American Journal of Medicine. 2002; 112: 298-304. |
APA Style
Arnaud Wenceslas Geoffroy Tamba Sompila, Nadia Pamela Gladys Pambou-Tobi, Roniche Nguie, Michel Elenga. (2023). Comparison of the Chemical Composition of L. schlechteri with Other Selected Green Leafy Vegetables. Science Journal of Chemistry, 11(1), 26-35. https://doi.org/10.11648/j.sjc.20231101.14
ACS Style
Arnaud Wenceslas Geoffroy Tamba Sompila; Nadia Pamela Gladys Pambou-Tobi; Roniche Nguie; Michel Elenga. Comparison of the Chemical Composition of L. schlechteri with Other Selected Green Leafy Vegetables. Sci. J. Chem. 2023, 11(1), 26-35. doi: 10.11648/j.sjc.20231101.14
AMA Style
Arnaud Wenceslas Geoffroy Tamba Sompila, Nadia Pamela Gladys Pambou-Tobi, Roniche Nguie, Michel Elenga. Comparison of the Chemical Composition of L. schlechteri with Other Selected Green Leafy Vegetables. Sci J Chem. 2023;11(1):26-35. doi: 10.11648/j.sjc.20231101.14
@article{10.11648/j.sjc.20231101.14, author = {Arnaud Wenceslas Geoffroy Tamba Sompila and Nadia Pamela Gladys Pambou-Tobi and Roniche Nguie and Michel Elenga}, title = {Comparison of the Chemical Composition of L. schlechteri with Other Selected Green Leafy Vegetables}, journal = {Science Journal of Chemistry}, volume = {11}, number = {1}, pages = {26-35}, doi = {10.11648/j.sjc.20231101.14}, url = {https://doi.org/10.11648/j.sjc.20231101.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20231101.14}, abstract = {The present study, aimed at analyzing by comparison the nutritional, mineral and fatty acid composition of some available green leafy vegetables, will promote an increased use and consumption of these vegetables for their contribution as a source of nutrients. L. schlechteri was used as a reference vegetable to perform this comparison. Recommended AOAC methods were used for the determination of moisture, ash, lipids, carbohydrates, and proteins of L. schlechteri, while the gas chromatographic method was used to evaluate the fatty acid profile of the extracted oil. The results showed that the ash of its vegetables ranged from 1.71 to 30.62% (b.h). Moisture was higher in L. schlechteri (97.50% b.h) and lower in C. integrifolia. (61.22% b.h). Protein and carbohydrate contents varied widely from 3.5 to 30.62 g/100 g, and from 2.30 to 63.22 g/100 g respectively. Lipids were higher in L. schlechteri (7.85%) and lower in Hibiscus c. (0.20%), while the calorific value in all leafy vegetables was relatively low. L. schlechteri had the highest calcium (1160 mg/100 g) and iron (400 mg/100 g) contents, M. oleifera in Mg (1910 mg) and finally G. africanum in phosphorus (1340 mg/100 g). It should also be noted that the PMQ oils contain 5 main fatty acids: palmitic, C16:0 (15.7-63%); stearic, C18:0 (1-2.50%); oleic, C18:1 (2-5.1%); linoleic, C18:2 (4-28.68%) and linolenic (9-53%). The values of ω6/ω3 and PUFA/SFA ratios are within the recommended levels for edible oils.}, year = {2023} }
TY - JOUR T1 - Comparison of the Chemical Composition of L. schlechteri with Other Selected Green Leafy Vegetables AU - Arnaud Wenceslas Geoffroy Tamba Sompila AU - Nadia Pamela Gladys Pambou-Tobi AU - Roniche Nguie AU - Michel Elenga Y1 - 2023/02/28 PY - 2023 N1 - https://doi.org/10.11648/j.sjc.20231101.14 DO - 10.11648/j.sjc.20231101.14 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 26 EP - 35 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20231101.14 AB - The present study, aimed at analyzing by comparison the nutritional, mineral and fatty acid composition of some available green leafy vegetables, will promote an increased use and consumption of these vegetables for their contribution as a source of nutrients. L. schlechteri was used as a reference vegetable to perform this comparison. Recommended AOAC methods were used for the determination of moisture, ash, lipids, carbohydrates, and proteins of L. schlechteri, while the gas chromatographic method was used to evaluate the fatty acid profile of the extracted oil. The results showed that the ash of its vegetables ranged from 1.71 to 30.62% (b.h). Moisture was higher in L. schlechteri (97.50% b.h) and lower in C. integrifolia. (61.22% b.h). Protein and carbohydrate contents varied widely from 3.5 to 30.62 g/100 g, and from 2.30 to 63.22 g/100 g respectively. Lipids were higher in L. schlechteri (7.85%) and lower in Hibiscus c. (0.20%), while the calorific value in all leafy vegetables was relatively low. L. schlechteri had the highest calcium (1160 mg/100 g) and iron (400 mg/100 g) contents, M. oleifera in Mg (1910 mg) and finally G. africanum in phosphorus (1340 mg/100 g). It should also be noted that the PMQ oils contain 5 main fatty acids: palmitic, C16:0 (15.7-63%); stearic, C18:0 (1-2.50%); oleic, C18:1 (2-5.1%); linoleic, C18:2 (4-28.68%) and linolenic (9-53%). The values of ω6/ω3 and PUFA/SFA ratios are within the recommended levels for edible oils. VL - 11 IS - 1 ER -